

Onshore WTG

EN 156/3.3

Basic parameters

3300kW Rated power IEC S Design class Cut -in wind speed 3m/s 25m/s Cut- out wind speed Maximum wind speed (10min) 40m/s Design lifetime 20 years

Converter

Type Three Level power converter, Type3 (IEEE) Frequency Rated output voltage 950V

Gearbox

3 stage transmission Type

Braking system

Main braking system Aerodynamic braking Secondary braking system Hydraulic braking

Rotor

Rotor diameter 156m 19113m² Swept area Pitch system Electrical pitching

Generator

Doubly-fed induction Generator type

Rated voltage 950V

Tower

Tower type Steel Tubular or Hybrid Tower (Optional) Hub height 120m / 140m

EN 182/5.0

Basic parameters

5000kW Rated power IEC S Design class Cut -in wind speed 3m/s 25m/s Cut- out wind speed Maximum wind speed (10 min), Verf 57m/s Design lifetime 25 years **Derating Temperature** 50°C

Rotor

Rotor diameter 181.1m 25759m² Swept area Electrical pitching Pitch system

Converter

Type Three Level power converter, Type3 (IEEE) 50Hz Frequency 1140V Rated output voltage

Gearbox

3 stages transmission Туре

Braking system

Aerodynamic braking Main braking system Secondary braking system Hydraulic braking

Generator

Doubly-fed induction Generator type Rated voltage 1140V

Tower

Steel Tubular or Hybrid Tower Tower type (Optional) Hub height 130m/140m

Offshore WTG

EN 252/14

Basic parameters

Rated power	14000kW
Design class	IEC S
Cut -in wind speed	3m/s
Cut- out wind speed	25m/s
Maximum wind speed (10 min), Verf	57m/s
Design lifetime	25 years

Rotor

Rotor diameter	252m
Swept area	49876m ²
Pitch system	Electrical pitching

Generator

Generator type	Permanent magnet
	medium speed
Rated voltage	1140V

Converter

Туре	Full scale power
Frequency	50Hz
Rated output voltage	1140V

Gearbox

Туре 3 stages transmission

Braking system

Main braking system	Aerodynamic braking
Secondary braking system	Hydraulic braking

Tower

Tower type	Steel tubular
Hub height	146m/site specific

Advanced Offshore Wind Power Technology

Professional Gearbox Transmission Technology and Application

With more than 15 years experience and 10,000 units of technology and application, Envision has deep knowledge of gearbox transmission technology. Meanwhile, the stable operation of Envision's self-developed gearboxes in the field further verifies its robustness and reliability. The offshore high-speed and medium-speed transmission products share the gearbox technology, and each plays its own strengths in different scenarios with high reliability.

Ultimate Platformitazation and Modulazation Architecture

Based on Envision's extensive knowledge of platformitazation and modulaztion, we created the ultimate expansion capability of the new platform, carrying multiple product series on the same platform, with ultra-wide coverage of power rating and rotor diameter, and flexibly seeking the optimal product solution in the changing scenarios of high, medium and low wind speed offshore combinations to achieve the best outcome for our clients.

Efficient and Low Cost Hoisting, Operation and Maintenance

Envision's advanced self-climbing tooling enables the replacement of wind turbine components with efficient and flexible operation and maintenance at lower costs. Combined with the modular design, the products can be flexibly transported, assembled and lifted in separate parts to improve the efficiency of installation, operation and maintenance for customers' diversified applications.

In-house Components for a Safe and Reliable Supply Chain

Based on comprehensive design and manufacturing experience, through inhouse development of big components and coorperation with high-quality suppliers, Envision has formed an efficient iterative development model and wind power industry chain with fully independent intellectual property rights. We provide customers with highly reliable, lightweight and high-quality components and a flexible, safe and stable supply system.

Industry-leading Blade Development System

As the power engine for the turbines, blades are the top priority of Envision's technology investment. Our international technical team have the world's leading high-performance aerodynamic design knowledge and experience. We perform a full set of rigorous performance and load acceleration tests to ensure high reliability of large blades. From design to test, from manufacturing to operation and maintenance, strict control of every link provides customers with high performance, reliable, and high quality blades.

Safe and Reliable Anti-Typhoon Capability

In response to the high ultimate wind speed and fast wind direction change during typhoon scenario, our wind turbines are equipped with backup power according to IEC typhoon design standards, while the blades, pitch yaw system, bearings and other major load-bearing components are strengthened to ensure safe operation of the turbines under various typhoon conditions. The leading control algorithm can achieve extra power boost in typhoon conditions.